深度对比三大框架在实现Agent记忆、知识库和任务管理工作流方面的差异
专注于LLM应用开发的框架,提供丰富的组件和工具链
微软开源的Agent框架,支持多Agent对话和协作
强大的工作流自动化平台,支持AI集成和复杂流程编排
功能特性 | LangChain | AutoGen | n8n |
---|---|---|---|
记忆管理 |
优秀
内置多种记忆组件
|
良好
对话历史管理
|
基础
状态持久化
|
知识库集成 |
优秀
丰富的向量数据库支持
|
基础
需要自定义集成
|
优秀
多种数据源连接
|
任务管理 |
优秀
Agent执行器
|
优秀
多Agent协作
|
优秀
可视化工作流
|
学习曲线 |
中等
概念较多
|
简单
直观的API
|
简单
可视化界面
|
扩展性 |
优秀
高度可定制
|
中等
Agent为中心
|
优秀
插件生态
|
LLM应用开发框架
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
# 创建记忆组件
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
# 创建对话链
llm = ChatOpenAI(temperature=0)
conversation = ConversationChain(
llm=llm,
memory=memory,
verbose=True
)
# 使用记忆进行对话
response = conversation.predict(input="你好,我是小明")
print(response)
response = conversation.predict(input="你还记得我的名字吗?")
print(response)
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader
# 加载文档
loader = TextLoader("data.txt")
documents = loader.load()
# 分割文档
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
texts = text_splitter.split_documents(documents)
# 创建向量数据库
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(
documents=texts,
embedding=embeddings
)
# 检索相关文档
query = "什么是机器学习?"
docs = vectorstore.similarity_search(query)
print(docs[0].page_content)
from langchain.agents import initialize_agent, Tool
from langchain.tools import DuckDuckGoSearchRun
from langchain.chat_models import ChatOpenAI
# 定义工具
search = DuckDuckGoSearchRun()
tools = [
Tool(
name="Search",
func=search.run,
description="用于搜索最新信息"
)
]
# 初始化Agent
llm = ChatOpenAI(temperature=0)
agent = initialize_agent(
tools,
llm,
agent="zero-shot-react-description",
verbose=True
)
# 执行任务
result = agent.run("搜索最新的AI技术发展")
print(result)
多Agent协作框架
import autogen
from autogen import AssistantAgent, UserProxyAgent
# 配置LLM
config_list = [
{
"model": "gpt-4",
"api_key": "your-api-key"
}
]
# 创建助手Agent
assistant = AssistantAgent(
name="assistant",
llm_config={"config_list": config_list},
system_message="你是一个有用的AI助手。"
)
# 创建用户代理
user_proxy = UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
llm_config={"config_list": config_list}
)
# 开始对话
user_proxy.initiate_chat(
assistant,
message="请帮我分析一下当前AI技术的发展趋势。"
)
import autogen
from autogen import AssistantAgent, UserProxyAgent
# 创建带记忆的Agent
assistant = AssistantAgent(
name="assistant",
llm_config={"config_list": config_list},
system_message="你是一个有记忆的AI助手。",
memory=True # 启用记忆功能
)
user_proxy = UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
llm_config={"config_list": config_list},
memory=True
)
# 多轮对话,Agent会记住之前的对话
user_proxy.initiate_chat(assistant, "我的名字是张三")
user_proxy.initiate_chat(assistant, "你还记得我的名字吗?")
import autogen
from autogen import AssistantAgent, UserProxyAgent
# 创建专业Agent
coder = AssistantAgent(
name="coder",
llm_config={"config_list": config_list},
system_message="你是一个专业的程序员。"
)
reviewer = AssistantAgent(
name="reviewer",
llm_config={"config_list": config_list},
system_message="你是一个代码审查员。"
)
# 创建用户代理
user_proxy = UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
llm_config={"config_list": config_list}
)
# 多Agent协作
groupchat = autogen.GroupChat(
agents=[user_proxy, coder, reviewer],
messages=[],
max_round=50
)
manager = autogen.GroupChatManager(groupchat=groupchat)
# 启动协作任务
user_proxy.initiate_chat(
manager,
message="请协作开发一个简单的计算器程序。"
)
工作流自动化平台
// n8n工作流配置示例
{
"name": "AI知识库工作流",
"nodes": [
{
"parameters": {
"url": "https://api.openai.com/v1/chat/completions",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "openAiApi",
"method": "POST",
"sendHeaders": true,
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "model",
"value": "gpt-4"
},
{
"name": "messages",
"value": "={{ $json.messages }}"
}
]
}
},
"id": "openai-node",
"name": "OpenAI",
"type": "n8n-nodes-base.openAi",
"typeVersion": 1,
"position": [240, 300]
}
]
}
// 数据处理节点配置
{
"parameters": {
"jsCode": "// 处理知识库数据\nconst items = $input.all();\nconst processedData = [];\n\nfor (const item of items) {\n const text = item.json.content;\n const chunks = text.match(/.{1,1000}/g) || [];\n \n for (const chunk of chunks) {\n processedData.push({\n content: chunk,\n metadata: {\n source: item.json.source,\n timestamp: new Date().toISOString()\n }\n });\n }\n}\n\nreturn processedData.map(data => ({ json: data }));"
},
"id": "code-node",
"name": "Process Data",
"type": "n8n-nodes-base.code",
"typeVersion": 2,
"position": [460, 300]
}
// 完整工作流配置
{
"name": "智能客服工作流",
"nodes": [
{
"parameters": {
"httpMethod": "POST",
"path": "webhook",
"responseMode": "responseNode"
},
"id": "webhook",
"name": "Webhook",
"type": "n8n-nodes-base.webhook",
"typeVersion": 1,
"position": [60, 300]
},
{
"parameters": {
"conditions": {
"string": [
{
"value1": "={{ $json.intent }}",
"operation": "contains",
"value2": "技术问题"
}
]
}
},
"id": "if-node",
"name": "Intent Check",
"type": "n8n-nodes-base.if",
"typeVersion": 1,
"position": [240, 300]
},
{
"parameters": {
"url": "https://api.openai.com/v1/chat/completions",
"method": "POST",
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "model",
"value": "gpt-4"
},
{
"name": "messages",
"value": "=[{\"role\": \"user\", \"content\": $json.question}]"
}
]
}
},
"id": "ai-response",
"name": "AI Response",
"type": "n8n-nodes-base.httpRequest",
"typeVersion": 4.1,
"position": [460, 200]
}
],
"connections": {
"Webhook": {
"main": [
[
{
"node": "Intent Check",
"type": "main",
"index": 0
}
]
]
},
"Intent Check": {
"main": [
[
{
"node": "AI Response",
"type": "main",
"index": 0
}
]
]
}
}
}
每个框架都有其独特的优势和适用场景。LangChain适合需要深度定制和复杂AI集成的项目, AutoGen适合需要多Agent协作的场景,而n8n则更适合需要可视化和企业级集成的项目。
在实际项目中,也可以考虑将多个框架结合使用,发挥各自的优势。例如, 使用LangChain处理核心AI逻辑,用n8n进行工作流编排,用AutoGen处理多Agent协作。
选择合适的技术栈是项目成功的关键。建议根据项目需求、团队技能和长期维护考虑来做出选择。